NYC Healthcare News



Multiple toxic mechanisms link elevated iron, copper levels in the brain and extensive DNA damage

March 31, 2016

"Reactive oxygen species cause the majority of the brain cell DNA damage that we see in Alzheimer's and Parkinson's disease, as well as most other neurodegenerative disorders," Hegde said. "It's bad enough if this damage occurs on one strand of the DNA double helix, but if both strands are damaged at locations close to each other you could have a double-strand break, which would be fatal to the cell."

Normally, special DNA repair enzymes would quickly mend the injury, restoring the genome's integrity. But experiments conducted by Hegde and his colleagues showed that iron and copper significantly interfere with the activity of two DNA repair enzymes, known as NEIL1 and NEIL2.

"Our results show that by inhibiting NEIL1 and NEIL2, iron and copper play an important role in the accumulation of DNA damage in neurodegenerative diseases," Hegde said.

The researchers got a surprise when they tested substances that bond to iron and copper and could protect NEIL1 from the metals. One of the strongest protective agents was the common South Asian spice curcumin, which also has been shown to have other beneficial health effects.

"The results from curcumin were quite beautiful, actually," Hegde said. "It was very effective in maintaining NEIL activity in cells exposed to both copper and iron."

Source: University of Texas Medical Branch at Galveston